boral - Bayesian Ordination and Regression AnaLysis
Bayesian approaches for analyzing multivariate data in ecology. Estimation is performed using Markov Chain Monte Carlo (MCMC) methods via Three. JAGS types of models may be fitted: 1) With explanatory variables only, boral fits independent column Generalized Linear Models (GLMs) to each column of the response matrix; 2) With latent variables only, boral fits a purely latent variable model for model-based unconstrained ordination; 3) With explanatory and latent variables, boral fits correlated column GLMs with latent variables to account for any residual correlation between the columns of the response matrix.
Last updated 1 years ago
jagscpp
3.45 score 2 stars 79 scripts 728 downloadsrpql - Regularized PQL for Joint Selection in GLMMs
Performs joint selection in Generalized Linear Mixed Models (GLMMs) using penalized likelihood methods. Specifically, the Penalized Quasi-Likelihood (PQL) is used as a loss function, and penalties are then augmented to perform simultaneous fixed and random effects selection. Regularized PQL avoids the need for integration (or approximations such as the Laplace's method) during the estimation process, and so the full solution path for model selection can be constructed relatively quickly.
Last updated 2 years ago
openblascpp
1.08 score 12 scripts 163 downloads